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Abstract
We introduce a novel and potentially powerful, yet relatively simple extension of the spectral inversion method, which offers the

possibility of carrying out 4-dimensional (4D) atomic force spectroscopy. With the extended spectral inversion method it is

theoretically possible to measure the tip–sample forces as a function of the three Cartesian coordinates in the scanning volume (x, y

and z) and the vertical velocity of the tip, through a single 2-dimensional (2D) surface scan. Although signal-to-noise ratio limita-

tions can currently prevent the accurate experimental implementation of the 4D method, and the extraction of rate-dependent ma-

terial properties from the force maps is a formidable challenge, the spectral inversion method is a promising approach due to its

dynamic nature, robustness, relative simplicity and previous successes.
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Introduction
Besides topographical imaging, a popular application of atomic

force microscopy (AFM) is the measurement of probe–sample

interaction force curves (force spectroscopy), generally based

on contact and frequency-modulation methods [1-6]. The proce-

dure is generally time-consuming because the acquisition of the

force curve for each (x,y) location on the surface requires that

the cantilever approaches and retracts from the sample at rela-

tively low vertical speed, without traveling horizontally. If one

wishes to fully characterize a 2D sample, one must slowly

acquire force curves throughout the surface, one location at a

time. In 2002, Stark et al. [7] introduced an AFM method for

performing real-time spectroscopy simultaneously with topo-

graphic imaging (that is, while the cantilever images the surface

at typical scan speeds), through acquisition and inversion of the

spectral response of the tip motion. This approach permits

extraction of the tip–sample interaction force as a component of

the driving force acting on the cantilever and was demonstrated

with standard cantilevers, although the low signal-to-noise ratio
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Figure 1: Simulated reconstructed tip–sample interaction force curve for a typical polymer, for a fixed (x,y) point on the surface for which the force is
plotted as a function of the vertical tip–sample distance and the velocity of the cantilever tip (expanded representation, left), and only as a function of
the vertical tip–sample distance (traditional representation, right). All force curves shown in this paper were constructed through simulation of the
spectral inversion method [11]. In all cases the origin of the vertical position (tip–sample distance) axis is located at the relaxed position of the surface.
The “turning point” is the lowest vertical position reached by the tip during tip–sample impact.

of certain regions of the spectrum limited its accuracy. In 2007,

Sahin and co-workers [8] introduced a T-shaped cantilever with

an off-centered tip located on one of the arms of the “T”, the

so-called torsional harmonic cantilever (THC), on which the

tip–sample interaction generates a torsional oscillation whose

amplitude is enhanced by the soft and highly detectable funda-

mental torsional frequency. Such enhancement provided a more

accurate means to implement the method of Stark et al. [7] and

the improved technique has been validated experimentally

[8-10], studied computationally [11,12] and also commercial-

ized [HarmonixTM, Bruker Corporation (formerly Veeco Instru-

ments)].

In the current implementations of the spectral inversion method,

the user performs a 2-dimensional (2D) scan of the surface to

acquire the topography plus a tip–sample force curve, f(z), at

every (x,y) pixel, which effectively results in a 3D description

of the tip–sample forces, f(x,y,z). The force curves for each

sample location are plotted as 2D graphs depicting the force as

a function of the tip–surface separation, as is customary in

atomic force spectroscopy (see Figure 1, traditional representa-

tion). The purpose of this paper is to introduce an extension of

the method, such that the forces can be acquired in 4 dimen-

sions (4D), as a function of the three Cartesian coordinates of

the scanning volume, plus the vertical velocity of the tip (see

Figure 1, expanded representation). This capability could be

useful in the study of samples whose response depends on the

rate of application of strains or stresses, such as polymers,

composites, soft metals and biological materials, as well as in

the study of other rate-dependent phenomena, such as binding

or folding/unfolding events in complex biomolecules.

Methods
The details of the spectral inversion method using the torsional

harmonic cantilever have been described in detail elsewhere

[8,11], so they are discussed only briefly here. In order to

implement the mathematics of the force inversion procedure, it

is assumed that the fundamental torsional eigenmode follows

the dynamics of a damped harmonic oscillator, whose transfer

function is

(1)

where ω is the angular frequency, ωT the torsional resonance

angular frequency, kT the torsional force constant, which has

been linearized in the vertical direction, and QT is the torsional

quality factor. As the cantilever base is oscillated in the vertical

direction by the piezo shaker, the fundamental flexural eigen-

mode is excited such that the tip undergoes intermittent contact

with the surface, which in turn excites the torsional eigenmode
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(recall that the tip is located on one of the arms of the “T” and

not on the center of the cantilever end). Since the torsional

eigenmode is not directly driven by the piezo shaker, the only

driving force acting on it is the time-dependent tip–sample

interaction, fd(t) = Fts[zc(t) + zp(t)], which generates a torsional

response that can be linearized in the z-direction, zp(t). Here Fts

is the tip–sample interaction force, which is a function of the

distance between the tip and the sample (tip position). The

tip–sample distance, in turn, is determined by the flexural

cantilever position, zc(t), plus the deflection of the torsional

“paddle” (arms of the “T”) with respect to the flexural position,

zp(t). Invoking the definition of the transfer function, one can

write the response of the torsional oscillator in Fourier space as

(2)

where Zp(ω) is the spectrum of zp(t), Fd(ω) is the spectrum of

fd(t), and Tp(ω) is the transfer function, defined in Equation 1.

Since it is possible to measure the deflection of the torsional

oscillator, zp(t), in real time as the cantilever taps on the sample,

one can easily calculate its spectrum, Zp(ω), through applica-

tion of the fast Fourier transform to a sequence of values of zp(t)

recorded at regular intervals. Additionally, one can also obtain

the spectrum of the driving force by rewriting Equation 2 as

(3)

Next, one can apply the inverse fast Fourier transform to Fd(ω)

in order to obtain fd(t), that is, the time-dependent tip–sample

interaction force acting on the cantilever tip. Finally the force

curves are obtained by plotting fd(t) as a function of the vertical

tip position, which is generally approximated by the position of

the cantilever flexural oscillation, zc(t) (that is, neglecting zp(t)),

under the assumption of negligible torsional oscillation

compared to the length scale over which the tip–sample forces

vary.

In the ideal application of the spectral inversion method, it

would be desirable to acquire Zp(ω) for the widest possible

frequency range, such that all features of the force curve (e.g.,

sharp turns at the location of maximum attractive force) can be

accurately recovered. However, this is difficult because the

spectrum of the torsional eigenmode, Zp(ω), follows the general

shape of the transfer function, Tp(ω), which rapidly decays as

the frequency deviates from the resonance frequency (recall that

harmonic oscillators exhibit a Lorentzian frequency response).

As a result, the high-frequency peaks in Zp(ω) become smaller

and smaller as ω increases, such that their signal-to-noise ratio

decreases rapidly as ω increases. Thus, in order to prevent high-

frequency noise in the data from being magnified into the

recovered force curves through division by very small values of

Tp(ω) (see Equation 3), one applies a cutoff to Zp(ω) [7,8]. This

cutoff is generally set to include only a few harmonics (often

only one) above the torsional resonance frequency.

In order to obtain a 4D representation of the tip–sample forces,

it is necessary to also measure the tip velocity in real time,

which can be easily recovered from the flexural position, zc(t)

(again, neglecting zp(t)), by using the well-known property of

Fourier analysis that states that

(4)

where the operators F{} and F−1{} are the Fourier transform

and the inverse Fourier transform, respectively. Recovery of the

velocity in the Fourier domain allows averaging of multiple

oscillation cycles as well as filtering of the data in order to

reduce the noise typically seen in the photodetector signal and

in order to filter out the effect of flexural–torsional cross-talk

[8,11,12]. Upon completion of the scan and post-processing of

the data [11], the user will have acquired  for every (x,y)

pixel on the surface (see Figure 1, expanded representation),

which is equivalent to the 4D representation  for

the full scan. It is also possible to perform spectroscopy at a

fixed (x,y) position on the surface, acquiring successive force

curves while varying a particular imaging parameter, such that

multiple force curves following different  trajectories can

be combined in representing the probe–sample interaction as a

corrugated plane instead of a single force curve. An example is

provided in Figure 2. We point out that although the proposed

expanded method provides data in four dimensions, it is not an

unrestricted 4D force-measurement method. This is because the

velocity cannot be varied arbitrarily, but is instead directly

related to the tip position and both are governed by the

dynamics and properties of the cantilever–sample system. Thus,

depending on the system, there will be regions of the 

phase space for which the force cannot be measured because not

all four coordinates can be varied independently of one another.

The numerical integration methods and equations of motion

used to simulate the spectral inversion reconstruction of the

force curves presented in this paper are described in detail in

[11]. Briefly, the procedure for simulating the acquisition of

each individual force curve consists of (i) defining the system

parameters (cantilever eigenfrequencies, force constants and

quality factors, free flexural amplitude and amplitude setpoint,

tip–sample force model, etc.); (ii) numerical implementation of

the amplitude-modulation imaging scheme; (iii) recording of

the flexural and torsional eigenmode positions as a function of

time at regularly spaced intervals (digitally) for several flexural

periods; and (iv) application of the inversion procedure
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Figure 2: Collection of reconstructed tip–sample interaction force curves for a fixed (x,y) point on the surface, each similar to that shown in Figure 1
(expanded representation), plotted together as a plane. In this simulation, different force curves were acquired for different rest positions of the
cantilever above the surface and were all plotted together. The plots show two different views of the same data. The white open circles represent

 points and each force curve is a succession of such points that follows the direction indicated by the white arrows. That is, during the ap-
proach, the tip travels towards and into the surface (with negative velocity) down to the turning point, and then travels upward (with positive velocity)
away from the sample. Different force curves have different incoming and outgoing velocity.

described above to recover the tip–sample forces. The

tip–sample interaction was simulated as the combination of

attractive van der Waals forces (modeled through the Hamaker

equation [13]) plus repulsive and dissipative interactions. In

most cases, the repulsive forces were modeled by using a

Hertzian contact [13], while the dissipative interactions were

modeled by using a viscous force term proportional to the tip

speed with a coefficient that decayed exponentially with the tip

position [14] (see equations and further details in [11]). We also

conducted simulations in which the conservative and dissipa-

tive interactions were accounted for through the standard linear

solid model (see Figure 3 and the next section), in combination

with attractive van der Waals interactions.

Results and Discussion
Characterization of rate-dependent
phenomena
The ability to recover rate-dependent signatures of the

tip–sample forces presents a unique opportunity to study

phenomena such as plasticity, viscoelasticity and biomolecular

binding and folding/unfolding. For example, it should be

possible to develop methods for fitting experimental data to

increasingly elaborate viscoelastic models that go beyond the

Kelvin–Voigt model used in the current state of the art in

contact-resonance AFM [15,16]. In particular, the Kelvin–Voigt

model is not well suited to study stress relaxation. (While this

paper is not intended to be a study of surface viscoelasticity, we

briefly illustrate the use of slightly more elaborate surface

models.) Instead, one could, for example, use the standard

linear solid (SLS) model, which is a combination of the

Maxwell and Kelvin–Voigt models. In the SLS configuration a

Maxwell element is connected in parallel with a second spring

(this setup is also known as the Zener model). The SLS approxi-

mation provides the simplest form of a linear viscoelastic

approximation that can reproduce both stress relaxation and

creep compliance, which are observed in the response of real

viscoelastic surfaces. Figure 3a provides a schematic of our

application of the 4D force mapping concept, modeling the

surface as a simple SLS that also experiences van der Waals

interactions with the tip. Figure 3b illustrates a “virtual experi-

ment” in which, using the same cantilever, the user acquires

multiple force curves at a single pixel by varying the amplitude

setpoint. One can also conceive other types of studies in which

one varies other parameters, such as the cantilever stiffness,

mass, eigenfrequency ratios, etc., keeping all other parameters

constant. While not all these studies are experimentally feasible,

they can provide significant insight into the evolution of the 4D

force representation, individual  trajectories, and

optimum imaging parameters for different types of systems.

Due to the nature of the SLS, one standard feature of the corres-

ponding  trajectories, which is evident in Figure 3b, is

that the vertical tip position at which the tip impacts the surface

is not the same location at which the tip leaves the surface (that

is, the surface can remain temporarily indented after being

impacted by the tip). In fact, depending on the horizontal scan

speed of the cantilever and the number of taps that take place at
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Figure 3: (a) Schematic of a torsional harmonic cantilever interacting with a surface modeled as a standard linear solid (Ko and Kinf represent linear
springs and cd represents a linear damper); (b) collection of force curves acquired for different values of the amplitude setpoint by using the same
cantilever. Note that the force curves in (b) exhibit a loop, indicating that the tip travels into and towards the surface twice during each flexural cycle
resulting in a “double tap”. This can occur whenever two eigenmodes with different natural frequencies are active. Similar phenomena take place
when imaging samples in high-damping (liquid) environments [18] or in multifrequency AFM characterization [19].

Figure 4: Illustration of the surface depression by the tip–sample impact, and successive recovery within the standard linear solid model. Z1 is the
undisturbed surface position, before any impacts have taken place. Z’1 is the vertical tip position where tip–sample contact is lost after the first impact
(loss of contact occurs because the surface recovery speed is lower than the tip speed). Between the first and second impacts the tip recovers to pos-
ition Z2. If the tip continues tapping at the same surface pixel, the impact and loss-of-contact locations asymptotically approach constant values.

every pixel, the tip may contact the surface at different heights

during successive impacts, as illustrated in Figure 4. Due to the

simplicity of the SLS model, analytical expressions exist for

various aspects of its behavior, such as the rate of recovery of

the surface (for example, the surface height recovery from pos-

ition Z’1 to position Z2 between times t1 and t2 in Figure 4 can

be expressed analytically). As a result, it is possible to fit the

three parameters of the model from reconstructed force curves,

even without explicitly acquiring velocity information, provided

that the force curve inversion is accurate (a detailed analysis of

parameter recovery from force curves for the SLS model can be

found in [17]).
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Figure 5: Example of force curve distortion for a case in which both
conservative and dissipative interactions are present. The recovered
curve uses a frequency cutoff of one harmonic above the torsional
resonance frequency, similar to what is customary in experiments, and
contains a very shallow and shifted minimum which differs for the ap-
proach and retract (compare to Figure 6b in [11], which shows the
high-quality force curve recovered by using all available harmonics).
The sample modulus of elasticity in this simulation is 2 GPa. The force
curve was simulated as the sum of a conservative Hamaker–Hertzian
contact with a height-dependent viscous term [14] (this combination of
models does not consider surface depression or recovery, so the loca-
tion of the force minima is the same for the tip approach and retract).

Experimental feasibility
The additional post-processing demands required to extend the

spectral inversion method from three to four dimensions are

relatively minor, since the tip position data is already recorded.

Furthermore, all Fourier analysis is carried out during a post-

processing step and the calculation of the velocity does not

represent an excessive computational burden. Thus, the 4D

implementation is relatively straightforward, requiring no new

technology. However, important limitations still exist in

performing the method upgrade accurately and using it mean-

ingfully, depending on the application. In particular, the study

of viscoelastic models in intermittent contact AFM demands

very high accuracy in order to reproduce the sharp curvatures

and intricate features of the force curves [17]. While the

torsional harmonic cantilever leads to an enhanced implementa-

tion of the original spectral inversion procedure, which is suffi-

ciently accurate to estimate the effective Young’s modulus of

soft samples, it does not solve the issues of signal-to-noise ratio

for the higher frequencies in the spectrum (that is, for frequen-

cies that are appreciably higher than the torsional eigenfre-

quency). This challenge becomes more significant as the sample

stiffness increases (see for example, Figure 7 in [11]) and can

compound itself with distortions in the force curve that may

emerge in the presence of dissipation, whereby the hysteresis

loops in the tip–sample force curve can change shape or shift

along the tip-position axis as harmonics are removed from the

spectrum (see Figure 5). Even for a simple SLS surface, it is not

possible to recover the model parameters unless the impact and

loss-of-contact tip positions, both of which are located at sharp

minima on the force curve, can be determined accurately (see

Figure 3, Figure 4 and [17]). A second important consideration

concerning accuracy is that when the torsional oscillation

amplitude becomes significant with respect to the length scale

over which the tip–sample forces vary, accuracy is lost when

the z-position in the force curves is approximated by zc(t) in

place of zc(t) + zp(t) (this is also discussed in detail in [11]). The

use of the correct expression describing the time-dependent tip

position is mathematically straightforward, but is not trivial in

an experiment, where there can be signal cross-talk [8,11] and

where calibration and noise limitations are present. For all these

reasons, it is recommended to apply the method in combination

with simulations [11,12], such that the user has a theoretical

estimate of the errors incurred in the characterization. Finally,

as already implied above, there remain unsolved signal-to-noise

ratio challenges even when using the torsional harmonic

cantilever, so hardware and cantilever development opportuni-

ties still exist, especially in terms of enhancing and expanding

the region of the cantilever spectrum that can be recovered with

a high signal-to-noise ratio.

Conclusion
We have presented a simple, yet potentially powerful upgrade

to the spectral inversion method of atomic force microscopy,

which makes possible the mapping of the tip–sample inter-

action forces in four dimensions (the three Cartesian coordi-

nates in the scanning volume plus the vertical velocity of the

probe). We have also highlighted important limitations that still

exist in the accurate experimental implementation of this proce-

dure. Despite the unsolved challenges, the proposed approach

could, in combination with future instrumentation and

cantilever upgrades, enable studies in which rate-dependent

phenomena, such as viscoelasticity and plasticity, are character-

ized in real time by using tapping-mode atomic force

microscopy.
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